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New exact solutions to N-dimensional radially symmetric nonlinear diffusion 
equations with power-law diffusivities are constructed in terms of the generalized 
conditional symmetry method, which can be thought as a generalization of the 
nonclassical symmetry method due to Bluman and Cole. 

. INTRODUCTION 

This paper discusses N-dimensional radially symmetric nonlinear diffu- 
sion equations of the form 

Ou 
- - =  r t -N(rN-ID(U)Ur)r  (1.1) 
Ot 

In particular, we shall consider the case D(u)  = u m, so that 

Ou = r l -N( rN-  l UmUr)r (1.2) 
Ot 

Equations .of the form (1.2) have a large number of applications in 
science and engineering, and various exact solutions exist. The similarity 
solutions to (1.2) are known (Peleteir, 1981; Lacey et al., 1982; Hill, 1989). 
King (1990) obtained the instantaneous source and dipole solutions to (1.2). 
Other results are given in Yang et al. (1990) and Frey et  al. (1993). 

The symmetry method plays an important role in finding exact solutions 
of partial differential equations (PDEs). The classical symmetry method was 
first applied to linear PDEs by Lie ( 1881). There have been several generaliza- 
tions of Lie's method. Ovsiannikov (1982) developed the method of partially 
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invariant solutions; Bluman and Cole (1969) proposed a so-called nonclassical 
method of group-invariant solutions, which is also known as the "method of  
conditional symmetry." Clarkson and Kruskal (1989) gave a direct, algorith- 
mic method for finding symmetry reductions. Olver and Rosenau (1986) 
gave an extension for the nonclassical method which is too general to be 
practical. Recently Fokas and Liu (1994a,b) introduced the concept of  general- 
ized conditional symmetry (GCS). A novel feature of  the GCS method is 
that one can construct some physically important exact solutions of  nonlin- 
ear PDEs. 

The purpose of the present paper is to consider the GCS of equation 
(l.1); then some new exact solutions are constructed via a compatibility 
condition of the GCSs and equation (1.2). The paper is organized as follows. 
GCSs for (1.2) are considered in Section 2 and some new exact solutions of 
(1.2) are obtained in Section 3. Section 4 is a discussion of  our results. 

2. G E N E R A L I Z E D  C O N D I T I O N A L  S Y M M E T R I E S  F O R  
E Q U A T I O N  (1.2) 

Let K(t, u) denote a function which depends in a differentiable manner 
on u, ux, u . . . . . .  and t. The function cy(t, u) is a generalized symmetry of  
the equation 

ut = K(t, x, u) (2.1) 

i f f  

0o" 
- -  + [K,  ~ ]  = 0 ( 2 . 2 )  
Ot 

where [K, tr] = K'Gr -- cr'K, and primes denote the Frechet derivative. The 
GCS is a generalization of  conditional symmetry as generalized symmetry 
is a generalization of  symmetry. We extend Definition (1.1) of  Fokas and 
Liu (1994) to the time-dependent case: 

Definition 2.1. The  function tr(t, x, u) is a GCS of  equation (2.1) iff 
there exists a function F such that 

Off 
- -  + [K,  tr] = F(t, x, u, tr), F(t, x,  u, tr) = 0 ( 2 . 3 )  
Ot 

where K(t, u) and tr(t, x, u) are differential functions of  t, x and u, ux, u~,  
. . . .  where F(t, x, u, or) is a differential function of t, x, u, Ux, Ux~ . . . .  and 
tY, O'x, O'x.t, . . . .  

From Definition 2.1, the following fact is true. 
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P r o p o s i t i o n  2 .2 .  I f  cr is a G-CS o f  (2.1), and G ( t ,  x, u, 0) = 0, then cr 
is a lso  a G C S  o f  the equat ion 

u, = K ( t ,  x ,  u )  + G ( t ,  x ,  u,  (r) (2.4) 

We then see that equat ion  (1.2) admi ts  a G C S  of  the form 

(r = Ux~ + H ( t ,  x ,  u ) u  2 + F ( t ,  x ,  u )  + G ( t ,  x ,  u )  (2.5) 

iff  the fo l lowing  const ra in ts  on m, H, F, and Q are sat isf ied:  

- H "  + 4 H H '  - 3 m u - l H  ' - 2H 3 + 5 m u - I H  2 - 4 m ( m  - l )u -2H 

+ m ( m  - 1)(m - 2)u -3 = 0 (2.6a) 

- F "  + (2H - 3 m u - l ) F  ' + ( 9 m u - I H  -- 5 m ( m  -- l)u -2 + 4 H '  - 4H2)F  

+ N m x - l u - E ( m  - 1 - u H )  = 0 (2.6b) 

Ht - u " G "  - 3 m u " - I G  ' + ( S r n u " - l H  -- 6 m ( m  - 1)u m-2 + 4 u " H '  

- 4 u ' ~ H 2 ) G  + ( 2 u " H  - 4 m u ~ - I ) F x  + 4 m u " - I F  2 + 2 u " F F '  

- 2 N m x - 2 u  m- I  - 2 u m H F  2 - 2 N m x - l u " - I F  - u " F "  = 0 (2.6c) 

Ft + ( 7 m u " - t G  - 4 u ' G H  + 2 u " F x  + N x - 2 u m ) F  + 2 u m G F  ' - 3 N m . x - l u " - I G  

- 3 m u " - I G ~  + 2 N x - 3 u  m - N x - l u m F x  - u " F =  - 2 u " G "  - m u " - l G ~  = 0  

(2.6d) 

Gt + 3 m u ' n - l G  2 - 2 u " H G  z + ( 2 N x - 2 u  'n § 2 u " F ~ ) G  

- N x - l u " G ~  - u " G , ~  = 0 (2.6e) 

where  Ft,  F~, and F '  denote  part ia l  de r iva t ives  for t, x, and u, respect ively .  
Propos i t ion  2.1 impl ies  that the G C S s  wil l  be reduced  to condi t iona l  s y m m e -  
tries i f  H -- m/u. Solu t ions  o f  the case  H = m/u can also be ob ta ined  via  
King  (1990).  We pr imar i ly  cons ider  the case  H 4: ndu. 

To obta in  solu t ions  o f  (2.6), there are two cases  to consider :  

C a s e  A .  H u  = ot = const.  Equa t ion  (2.6a) then becomes  

2or 3 + (4 - 5m)ot 2 + (4m 2 - 7m + 2)ct - m ( m  - 1)(m - 2) (2.7) 

= 0  

which  has three solut ions  

ott = m - 1, et 2 = m, et 3 = m / 2  - 1 (2.8) 

As  noted  above,  et 2 -- m is excep ted  f rom our  considerat ion.  
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(A. 1) H = ( m  - l ) / u .  In this subcase,  equat ion (2.6) has only one solution 

F = - 1/x,  G = 0 (2.9) 

i.e., equat ion (1.2) admits  a GCS 

m - 1  . 1 
= u=  + - -  u ~._ - - ux (2.10) (3" 

U X 

(A.2) H = (�89 - 1)/u, m 4: 0. Ana logous  to case (A. I ) ,  the solutions 
o f  (2.6) are 

n 
~-m - 1 4 

H -  - - ,  F =  - x  - l ,  G = 0 ,  m -  N 4 : - 2  
u N + 2 '  

(2.1 la) 

o r  

F = (N - l )x  -~, G = 0 (2.11b) 

C a s e  B.  H u  4: const.  General ly ,  equat ion (2.6a) has no explici t  solutions. 
In two special cases, we  can obtain its explicit  solutions.  

(B.1). m = 0. In this subcase,  an explicit  solution o f  (2.6a) is 

QL 
n - - -  (2.12) 

1 - QlU 

where  Q~ 4 : 0  is an arbi trary constant.  Substi tuting (2.12) into (2 .6b) - (2 .6e) ,  
we  obtain the solutions o f  (2 .6b) - (2 .6e )  g iven by 

V = - l / x ,  G = 0 (2.13) 

(B.2) m = 1, i.e., D = u. We obtain the solution o f  (2.6a) g iven by 

1 
H - - -  (2.14) 

U - -  13//2 

where  13 is an arbitrary constant.  The  substitution o f  (2.14) into (2 .6b) - (2 .6e)  
implies  N = 1 and F = ~t/(u - 13u2), where  "y is an arbi trary constant,  which 
shows that 

admits  a GCS 

u,  = (UUx)x (2.15) 

cr = u = +  1 u~ + ~______2___ 
u - [3 u--------~ u - [3 uz ux (2.16) 
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3. S O M E  N E W  E X A C T  S O L U T I O N S  F O R  E Q U A T I O N  (1.2) 

In this section, we will construct new exact solutions for equation (1.2) 
by using the compatibility condition of  tr = 0 and (1.1). To derive these 
solutions one first solves the ODE cr = 0 to obtain u as a function of x with 
x-independent integration constants. One then substitutes this solution into 
equation (1.1) to determine the time evolution of  these constants. 

Case 3.1: 

u, = XI-N(XZV-lumux)x, m :/: 0 

Equation (3.1) admits a GCS 

m - 1  1 
ty = Uxx + - - U 2  - - - - U x  

U X 

Solving cr = 0, we obtain the solution of  (3.1) given by 

The substitution of  (3.2) into (3.1) implies Dl(t)  and D2(t) satisfying 

D'l(t) = (Nm + 2)Dl, 

with general solutions 

Dr(t) = Cl t'vm'~2, 

D~ = NmD2 

192 = C~t N" 

where Ci, i = 1, 2 . . . . .  hereafter denote arbitrary constants. 

Case 3.2: 

admits a GCS 

(r = 0 leads to 

U t = xI-N(xN-Iu-41(N+2)Ux)x~ N :/: - 2  

O" ~ UX. t 
N + 4  1 u2 - - ux 

(N + 2)u x 

u = (Dt(t)x 2 + D2(t)) 21m 

Substituting (3.6) into (3.5), we have 

O~ = 2ND2D 2, D~ = 2ND,  D~ 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

(3.7) 
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with general solutions 

Dl(t) = D3[-4NDa(t  + D4)] -1/2, D2(t) = [ -4ND3( t  + D4)] -I/2 

(3.8) 

where D 3 and D4 are two integration constants. 

u ,  =xi-U(~-%)~ 

Case 3.3: 

admits two GCSs 

I 1 Qx 1 
o ' ,  = u =  - - u ~  - - u x ,  o r 2  = U ~ x  + - -  u ~  - - u x ,  

x x 1 - Qlu x 

or, = 0 implies 

u = D2(t)e ~ 

which, combined with (3.9), yields that Dt and D2 satisfy 

D~ = 2(N + I)DnD2, D't = 2D 2 

Solving tr2 = 0, we obtain the solution of (3.9) given by 

1 D 2 ( -  1) 
U = - -  -I- - - e  Q]o l ( t ) x2  

QI Qn 

The substitution of (3.13) into (3.9) gives 

D[(t) = 4QD 2, D~(t) = 2Qi NDn D2 

Hence (3.12) and (3.14) can be easily solved. 

Case 3.4: 

u, = (uUx)x 

admits a GCS 

1 
~ = u u + - - u ~ ,  f~ # O  

" U - -  f~U 2 

Solving or = 0, we obtain the solution of (3.15) given by 

1 
u + ~ ln(13u - 1) = f3[Dl(t)x + O2(/)] 

(3.9) 

Q l # 0  

(3.10) 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

(3.16) 
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Substituting (3.16) into (3.15), we find that 

Dl(t)  = const D2(t) = ~D~t + D5 

with arbitrary constant Ds. 

(3.17) 

4. DISCUSSION 

We have considered N-dimensional radially symmetric diffusion equa- 
tions with power-law diffusivities, The GCS analysis has been applied to 
these equations in order to find some new exact solutions. We find that the 
GCS method is a useful tool. 

The GCS in fact is a generalization of the nonclassical symmetry method. 
It is possible that the GCS method will yield new results if applied to other 
types of evolution equations. Moreover, it can be used to classify nonlinear 
evolution equations with variable functions. All these problems are interesting 
and will be the subject of future studies. 
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